

Routes to Carbon-Neutral Transportation Fuels Derived from Solar Energy: The Helios Approach

California Climate Change Conference Sept 10, 2008

Crops & Biomass

Dr. Elaine Chandler
Helios Solar Energy Research Center
at
Lawrence Berkeley National Lab

Oil-producing organisms

Nanotechnology and Chemical Systems that Mimic Nature

PEC apparatus

Activated membranes

Integrated PS systems

Energy Research @Berkeley Lab

Fusion

Atmospheric studies

Geothermal

Fossil recovery & carbon sequestration

Building, Lighting, Home Appliance Standards

Goals of the Helios Initiative

- GOAL: Create transportation fuels from sunlight, 1% energy conversion efficiency, 10 year target
- Why? Transportation fuel is the most valuable type of stored energy

The reason we depend on the fossil fuels...

Carbon emissions from fossil fuels:

6-7 billion metric tons/year (2000)

Where does all the carbon go? Half of it stays in the atmosphere

Data from Carbon Dioxide Information Analysis Center, graphics by R. A. Rohde, Global Warming Art Project

Better efficiency for our vehicles is an important step

Only 15% of the energy* in a gallon of gasoline is used effectively in a "modern" internal combustion engine vehicle

*2.5 cups equivalent

Source: www.fueleconomy.gov/feg/atv.shtml

Improved efficiency will also help maximize the impact of carbon-neutral fuels

Helios paths to solar fuels

Solar Efficiency and Land Usage, USA

Area requirements to satisfy all US electricity at 15% efficiency, fuel @1%

Helios

Development of solar-derived chemical fuel, efficient, scalable to the US needs, and at low cost

Photosynthesis

cheap but inefficient

Photoelectrochemical Device

efficient but expensive

Energy Biosciences Institute

UC Berkeley, LBL, University of Illinois
Funded by a grant from BP

Focus on Biofuels

Feedstock Development

Biomass Depolymerization (Cell wall studies)

Biofuels Production

Fossil Fuel Bioprocessing

Environmental, Social & Economic Impact

Feedstock Development

- Feedstock production
- Genetics and breeding
- Composition
- Stress
- Harvesting, transport and storage

growing shoot

Dry shoots harvested, nutrients stay in rhizomes

Biomass Depolymerization

- Pretreatment
- Enzyme discovery
- Chemical catalysis

Biofuels Production

- Systems biology
- Pathway engineering
- Host engineering

Environmental, Social and Economic Dimensions

- Next-generation assessment
- Biofuels evaluation and adoption
- Biofuels markets and networks
- Social interactions and risks
- Environmental concerns

Areas of concern = Areas of research

- -Displacement of food crops
- -Scalability in agriculture
- -Guarantee for farmers
- -Investment in biorefineries
- -Policy development

Joint BioEnergy Institute

An integrated approach

Partners

- LBNL
- SNL
- LLNL
- UCB
- UCD
- Carnegie Institute

- Single location
- Four divisions
 - Feedstocks
 - Deconstruction
 - Fuels Synthesis
 - Technologies
- www.jbei.org

Lignin recalcitrance

Challenges

- Lignin is recalcitrant to depolymerization
- Lignin occludes cellulose & hemicellulose

Chemicals & fuels could be made from lignin

eedstocks

Approaches

- Engineer plants with cleavable lignin linkages
- Ionic liquids to separate cellulose and lignin
- Advanced imaging
- Ligno-chips to screen lignases

Fuel Synthesis

Fermentation inhibitors

Challenges

- Functional groups on hemicellulose can inhibit fermentation
- Functional groups are not efficiently converted to fuels

Approaches

- Engineer plants that do not have functional groups
- Ionic liquids to remove them
- Engineer microbes resistant to inhibitors
- Functional genomics

Fuel Synthesis

Solar Energy Research Center

Artificial photosynthesis

Actual photosynthetic apparatus

Courtesy of Freefoto.com

Researchers from LBNL, UC Berkeley, Cal Tech Arizona State, UC San Diego

Artificial Photosynthesis

Funded by DOE Office of Basic Energy Sciences

Solar Energy Research Center

Artificial photosynthesis

$$2 CO_2 + 4 H_2O \rightarrow 2 CH_3OH + 3 O_2$$

2 CO₂ + 4H₂O Fuel-Forming Reaction

Solar Energy Research Center

Creating the parts for Artificial Photosynthesis

Direct transformation of sunlight to transportation fuel

Using DOE advances in nano materials, catalysis, photochemistry, and theory to develop renewable fuels

Nanoscale solar cells designed to drive catalytic reactions

Synthesis P. Alivisatos, LBNL

System Goals

- Scales to a size that impacts US fuel needs
- Made of inexpensive & durable components
- Reduces atmospheric carbon dioxide

New catalytic molecules

For energy-storing reactions

C. Kubiac, UCSD

Entire solar photoelectro-catalysis (PEC) systems in single repeatable units

Pt/Si/TiO₂ (RuO2) Asymmetric Structure

P. Yang, LBNL

Membranes with embedded solar PEC systems

H. Frei, LBNL

We are now located throughout the East Bay Helios Energy Research Facility (2010/11)

Wrapup

- Not "just" fascinating science
- 3 Different approaches to solar-based carbon-neutral fuels
- Near, mid, long term elements in these projects
- Dealing with scaling requirements, as well as societal issues